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Problem formulation

◮ Definitions
◮ Examples

⋆ Shortest path problem
⋆ Minimum spanning tree problem
⋆ Steiner tree problem in graphs
⋆ Knapsack problem
⋆ Traveling salesman problem

Polynomial (efficient) algorithms

Characterization of problems and instances
(cases)

One problem has three versions

◮ Decision problem
◮ Recognition problem
◮ Optimization problem

The classes P and NP

Polynomial transformations and NP-complete
problems

PSPACE and the polynomial hierarchy

Solution approaches

◮ Superpolynomial algorithms
◮ Approximation algorithms
◮ Parallel processing
◮ Heuristics

⋆ Constructive heuristics
⋆ Local search
⋆ Metaheuristics

◮ Goals of algorithmic research in
metaheuristics
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An instance of a combinatorial optimization problem is defined by

a finite ground set E = {1, . . . , n}

a set of feasible solutions F ⊆ 2E

and an objective function f : 2E → R
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An instance of a combinatorial optimization problem is defined by

a finite ground set E = {1, . . . , n}

a set of feasible solutions F ⊆ 2E

and an objective function f : 2E → R

The finite ground set E , the set of feasible solutions F , and the objective function f are defined for each
specific problem.
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An instance of a combinatorial optimization problem is defined by

a finite ground set E = {1, . . . , n}

a set of feasible solutions F ⊆ 2E

and an objective function f : 2E → R

The finite ground set E , the set of feasible solutions F , and the objective function f are defined for each
specific problem.

For a minimization problem, we seek a global optimal solution S∗ ∈ F such that

f (S∗) ≤ f (S), ∀S ∈ F .
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An instance of a combinatorial optimization problem is defined by

a finite ground set E = {1, . . . , n}

a set of feasible solutions F ⊆ 2E

and an objective function f : 2E → R

The finite ground set E , the set of feasible solutions F , and the objective function f are defined for each
specific problem.

For a minimization problem, we seek a global optimal solution S∗ ∈ F such that

f (S∗) ≤ f (S), ∀S ∈ F .

For a maximization problem, we seek a global optimal solution S∗ ∈ F such that

f (S∗) ≥ f (S), ∀S ∈ F .
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Let G = (V ,A) be a directed graph, where V is its set of nodes and A its set of arcs.

The origin s and the destination t are two special nodes in V .

For every pair of nodes s, t ∈ V connected by a path Pst(G ) formed by a sequence of nodes
s = i1, i2, . . . , iq−1, iq = t ∈ V , the length of this path is given by

f (Pst(G )) =

q−1∑

k=1

dik ,ik+1 ,

where di,j is the length of arc (i , j) ∈ A and q is the number of arcs in the path.

The shortest path problem (SPP) is easy: it can be solved in O(|V |2) time (Dijkstra, 1959).
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Let G = (V ,A) be a directed graph, where V is its set of nodes and A its set of arcs.

The origin s and the destination t are two special nodes in V .

For every pair of nodes s, t ∈ V connected by a path Pst(G ) formed by a sequence of nodes
s = i1, i2, . . . , iq−1, iq = t ∈ V , the length of this path is given by

f (Pst(G )) =

q−1∑

k=1

dik ,ik+1 ,

where di,j is the length of arc (i , j) ∈ A and q is the number of arcs in the path.

The shortest path problem (SPP) is easy: it can be solved in O(|V |2) time (Dijkstra, 1959).

In the case of the shortest path problem:

The ground set consists of the arc set A.

The set of feasible solutions F is formed by all subsets of arcs that are paths from s to t in G .

The objective is to find a path P∗ ∈ F that minimizes the objective function f (P) over all paths
P ∈ F from s to t in G .
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Consider the example in the figure, not drawn to scale.
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Consider the example in the figure, not drawn to scale.

The shortest path from node 1 to node 6 is 1− 2− 3− 6
and is shown in red.

The length of this path is 55 + 20 + 25 = 100.
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Let G = (V ,U) be a graph, where the node set V corresponds to points to be connected and its edge set
U is formed by unordered pairs of points i , j ∈ V , with i 6= j .

Let dij be the length (or weight) of edge (i , j) ∈ U.

T (G ) = (V ,U ′) is any spanning tree of graph G , i.e., a connected subgraph of G with the same
node set V and whose edge set U ′ ⊆ U has exactly |V | − 1 edges.

The total weight of tree T (G ) is given by f (T (G )) =
∑

(i,j)∈U′ dij .
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Let G = (V ,U) be a graph, where the node set V corresponds to points to be connected and its edge set
U is formed by unordered pairs of points i , j ∈ V , with i 6= j .

Let dij be the length (or weight) of edge (i , j) ∈ U.

T (G ) = (V ,U ′) is any spanning tree of graph G , i.e., a connected subgraph of G with the same
node set V and whose edge set U ′ ⊆ U has exactly |V | − 1 edges.

The total weight of tree T (G ) is given by f (T (G )) =
∑

(i,j)∈U′ dij .

The minimum spanning tree problem (MSTP) is easy: it can be solved in O(|U| log |V |) time
(Kruskal, 1957).

In the case of the minimum spanning tree problem:

The ground set consists of the edge set U.

The set of feasible solutions F is formed by all subsets of edges that define spanning trees of G .

The objective is to find a spanning tree T ∗ ∈ F such that f (T ∗) ≤ f (T ) for all T ∈ F .
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Consider the example in the figure, not drawn to scale.
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Consider the example in the figure, not drawn to scale.

The minimum spanning tree of this graph is shown
in red and has five edges: (1, 2), (2, 3), (2, 4),
(3, 5), and (3, 6).

Its total weight is 55 + 20 + 40 + 35 + 25 = 175.
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Let G = (V ,U) be a graph, where the node set is V = {1, . . . , n} and the edge set U is formed by
unordered pairs of nodes i , j ∈ V , with i 6= j .

Let dij be the length of edge (i , j) ∈ U.

T ⊆ V is a subset of terminal nodes that have to be connected.

A Steiner tree S = (V ′,U ′) of G is a subtree of G that connects all nodes in T .

The cost of the Steiner tree S is f (S) =
∑

(i,j)∈U′ dij .
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Let G = (V ,U) be a graph, where the node set is V = {1, . . . , n} and the edge set U is formed by
unordered pairs of nodes i , j ∈ V , with i 6= j .

Let dij be the length of edge (i , j) ∈ U.

T ⊆ V is a subset of terminal nodes that have to be connected.

A Steiner tree S = (V ′,U ′) of G is a subtree of G that connects all nodes in T .

The cost of the Steiner tree S is f (S) =
∑

(i,j)∈U′ dij .

In the case of the Steiner tree problem in graphs:

The ground set consists of the edge set U.

The set of feasible solutions F is formed by all subsets of edges that define Steiner trees of G .

The objective is to find a Steiner tree S∗ ∈ F such that f (S∗) ≤ f (S) for all S ∈ F .

We shall see that the Steiner tree problem (STP) in graphs is intractable or NP-hard (Karp, 1972).
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Consider the example in the figure, not drawn to scale.
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Consider the example in the figure, not drawn to scale.

The terminal nodes are represented by circles,
while the optional nodes correspond to squares.

The minimum Steiner tree is shown in red and
makes use of the optional nodes 5 and 6.

Its total cost is 5 + 5 + 5 + 5 + 5 = 25.

The nonterminal (optional) nodes in V \ T that
are effectively used to connect the terminal nodes
in T are called Steiner nodes: nodes 5 and 6 in
this example.

The Steiner tree problem in graphs reduces to a
shortest path problem when |T | = 2 (easy).

It reduces to a minimum spanning tree problem
when T = V (also easy).
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Let b be an integer representing the maximum weight that can be taken in a hiker’s knapsack and
suppose the hiker has a set I = {1, . . . , n} of items to be placed in the knapsack.

Let ai be an integer number representing the weight of each item i ∈ I .

Let ci be an integer number representing the utility of each item i ∈ I .

A subset of items K ⊆ I is feasible if
∑

i∈K
ai ≤ b.

The utility of this subset K of items is f (K ) =
∑

i∈K
ci .
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Let b be an integer representing the maximum weight that can be taken in a hiker’s knapsack and
suppose the hiker has a set I = {1, . . . , n} of items to be placed in the knapsack.

Let ai be an integer number representing the weight of each item i ∈ I .

Let ci be an integer number representing the utility of each item i ∈ I .

A subset of items K ⊆ I is feasible if
∑

i∈K
ai ≤ b.

The utility of this subset K of items is f (K ) =
∑

i∈K
ci .

In the case of the knapsack problem:

The ground set consists of the set I of items to be packed.

The set of feasible solutions F is formed by all subsets of items K ⊆ I for which
∑

i∈K
ai ≤ b.

The objective of the knapsack problem is to find a set of items K∗ ∈ F such that f (K∗) ≥ f (K ) for
all K ∈ F .

We shall see that the knapsack problem (KS) is also intractable or NP-hard.
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Consider the example in the figure, where four items are
available to be placed in a knapsack of capacity 19.
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Consider the example in the figure, where four items are
available to be placed in a knapsack of capacity 19.

The weights of the yellow and green items are
equal to 10 and those of the blue and red items
are equal to 5: therefore, only two of the four
items fit together.

The two heaviest items have utilities 20 and 10,
while the two others have utilities 10 and 5. Since
both large items cannot be placed together, the
hiker will need to select a large and a small item.

Of each group, the hiker selects the item with
maximum utility: yellow and blue items are placed
in the knapsack, with a weight of 5 + 10 = 15 and
a maximum utility of 10 + 20 = 30.
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Consider the graph G = (V ,U) with non-negative lengths dij associated with each existing edge
(i , j) ∈ U, and let V = {1, . . . , n} be the set of cities a traveling salesman has to visit.

A feasible solution to the traveling salesman problem is a tour defined by a circular permutation
π = (i1, i2, . . . , in, i1) of the n cities, with ij 6= ik for every j 6= k ∈ V .

This permutation is associated with the Hamiltonian cycle H = {(i1, i2), (i2, i3), . . . , (in−1, in), (in, i1)}
in G , i.e. (in, i1) ∈ U and (ik , ik+1) ∈ U, for k = 1, . . . , n − 1.

The total length of this tour is given by f (H) =
∑n−1

k=1 dik ,ik+1 + din,i1 .
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Consider the graph G = (V ,U) with non-negative lengths dij associated with each existing edge
(i , j) ∈ U, and let V = {1, . . . , n} be the set of cities a traveling salesman has to visit.

A feasible solution to the traveling salesman problem is a tour defined by a circular permutation
π = (i1, i2, . . . , in, i1) of the n cities, with ij 6= ik for every j 6= k ∈ V .

This permutation is associated with the Hamiltonian cycle H = {(i1, i2), (i2, i3), . . . , (in−1, in), (in, i1)}
in G , i.e. (in, i1) ∈ U and (ik , ik+1) ∈ U, for k = 1, . . . , n − 1.

The total length of this tour is given by f (H) =
∑n−1

k=1 dik ,ik+1 + din,i1 .

In the case of the traveling salesman problem:

The ground set E consists of the set U of edges.

The set of feasible solutions F is formed by all subsets of edges that correspond to Hamiltonian
cycles in G .

The objective of the traveling salesman problem is to find a Hamiltonian cycle H∗ ∈ F such that
f (H∗) ≤ f (H) for all H ∈ F .

We shall see that the traveling salesman problem (TSP) is also intractable or NP-hard (Karp, 1972).
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Consider the example in the figure, not drawn to scale.
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Consider the example in the figure, not drawn to scale.

An optimal tour

H = {(1, 2), (2, 3), (3, 6), (6, 5), (5, 4), (4, 1)}

is shown in red.

It visits cities 1− 2− 3− 6− 5− 4− 1 in this order.

Its total length is
55 + 20 + 25 + 50 + 60 + 75 = 285.



Polynomial-time algorithms
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A problem is considered as well-solved if there exists an efficient algorithm for its exact solution.
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A problem is considered as well-solved if there exists an efficient algorithm for its exact solution.

Efficient algorithms are those that are not too time-consuming and whose computation times do not
grow excessively fast with the problem size.

The rate of growth of the time taken by an algorithm is the main limitation for its use in practice:
algorithms with fast increasing computation times quickly become useless.

An algorithm is said to be efficient (and therefore useful) for solving a problem whenever its running
time (or time complexity) grows polynomially with the number of its variables.
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A problem is considered as well-solved if there exists an efficient algorithm for its exact solution.

Efficient algorithms are those that are not too time-consuming and whose computation times do not
grow excessively fast with the problem size.

The rate of growth of the time taken by an algorithm is the main limitation for its use in practice:
algorithms with fast increasing computation times quickly become useless.

An algorithm is said to be efficient (and therefore useful) for solving a problem whenever its running
time (or time complexity) grows polynomially with the number of its variables.

Polynomial algorithms are known for the shortest path problem and the minimum spanning tree
problem.

The Steiner tree problem in graphs, the maximum clique problem, the knapsack problem, and the
traveling salesman problem are typical examples of hard problems for which, to date, no polynomial
algorithm is known: hard optimization problems in this category are those that benefit from
metaheuristics for their solution.
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Each instance (case) of a combinatorial optimization problem is characterized by:

Finite ground set E = {1, . . . , n}

Set F of feasible solutions

Cost function f : F → R that associates a real value f (S) with each feasible solution S ∈ F
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Each instance (case) of a combinatorial optimization problem is characterized by:

Finite ground set E = {1, . . . , n}

Set F of feasible solutions

Cost function f : F → R that associates a real value f (S) with each feasible solution S ∈ F

The set F of feasible solutions is implicitly given by a recognition algorithm AF :

Given an object S ∈ 2E and a set PF of parameters, the recognition algorithm determines if object S
belongs to F , i.e., if S is a feasible solution.
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Each instance (case) of a combinatorial optimization problem is characterized by:

Finite ground set E = {1, . . . , n}

Set F of feasible solutions

Cost function f : F → R that associates a real value f (S) with each feasible solution S ∈ F

The set F of feasible solutions is implicitly given by a recognition algorithm AF :

Given an object S ∈ 2E and a set PF of parameters, the recognition algorithm determines if object S
belongs to F , i.e., if S is a feasible solution.

The cost function f (S) is implicitly given by a cost calculation algorithm Af :

Given a feasible solution S ∈ F and a set Pf of parameters, the cost calculation algorithm computes
the cost function value f (S) of a feasible solution S .
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Each instance (case) of a combinatorial optimization problem is characterized by:

Finite ground set E = {1, . . . , n}

Set F of feasible solutions

Cost function f : F → R that associates a real value f (S) with each feasible solution S ∈ F

The set F of feasible solutions is implicitly given by a recognition algorithm AF :

Given an object S ∈ 2E and a set PF of parameters, the recognition algorithm determines if object S
belongs to F , i.e., if S is a feasible solution.

The cost function f (S) is implicitly given by a cost calculation algorithm Af :

Given a feasible solution S ∈ F and a set Pf of parameters, the cost calculation algorithm computes
the cost function value f (S) of a feasible solution S .

Therefore, each problem is characterized by the recognition algorithm AF and the cost calculation
algorithm Af , while each instance (case) is characterized by a pair of parameter sets PF and Pf .
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Each instance (case) of a combinatorial optimization problem is characterized by:

Finite ground set E = {1, . . . , n}

Set F of feasible solutions

Cost function f : F → R that associates a real value f (S) with each feasible solution S ∈ F
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Parameters for feasibility: directed graph G = (V ,A) with node set V and arc set A, source and
destination nodes s, t ∈ V

Parameters for cost function calculation: arc lengths dij , for every arc (i , j) ∈ A



Shortest path problem – Characterization

University of Vienna Complexity Theory Metaheuristics – 2017-10-11 16 / 52

Parameters for feasibility: directed graph G = (V ,A) with node set V and arc set A, source and
destination nodes s, t ∈ V

Parameters for cost function calculation: arc lengths dij , for every arc (i , j) ∈ A

Ground set: arc set A

Candidate object to be a feasible solution: any subset P of the arcs in A



Shortest path problem – Characterization

University of Vienna Complexity Theory Metaheuristics – 2017-10-11 16 / 52

Parameters for feasibility: directed graph G = (V ,A) with node set V and arc set A, source and
destination nodes s, t ∈ V

Parameters for cost function calculation: arc lengths dij , for every arc (i , j) ∈ A

Ground set: arc set A

Candidate object to be a feasible solution: any subset P of the arcs in A

Recognition algorithm checks if candidate object P is a path from s to t in G .

Cost calculation algorithm adds up the lengths of all arcs in P to compute the cost function value
f (P).
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Parameters for feasibility: undirected graph G = (V ,U) with node set V and edge set U

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U
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Parameters for feasibility: undirected graph G = (V ,U) with node set V and edge set U

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U

Ground set: edge set U

Candidate object to be a feasible solution: any subset T of the edges in U
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Parameters for feasibility: undirected graph G = (V ,U) with node set V and edge set U

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U

Ground set: edge set U

Candidate object to be a feasible solution: any subset T of the edges in U

Recognition algorithm checks if candidate object T is a spanning tree in G .

Cost calculation algorithm adds up the lengths of all edges in T to compute the cost function value
f (T ).
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Parameters for feasibility: undirected graph G = (V ,U) with node set V and edge set U

Parameters for cost function calculation:
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Parameters for feasibility: undirected graph G = (V ,U) with node set V and edge set U

Parameters for cost function calculation:

Ground set: edge set V

Candidate object to be a feasible solution: any subset C of the nodes in V
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Parameters for feasibility: undirected graph G = (V ,U) with node set V and edge set U

Parameters for cost function calculation:

Ground set: edge set V

Candidate object to be a feasible solution: any subset C of the nodes in V

Recognition algorithm checks if candidate object C is a clique in G .

Cost calculation algorithm counts the number of nodes in C to compute the cost function value
f (C).



Knapsack problem – Characterization
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Parameters for feasibility: maximum weight b of the knapsack and weights ai of each item i ∈ I

Parameters for cost function calculation: utilities ci , for each item i ∈ I
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Parameters for feasibility: maximum weight b of the knapsack and weights ai of each item i ∈ I

Parameters for cost function calculation: utilities ci , for each item i ∈ I

Ground set: item set I

Candidate object to be a feasible solution: any subset K of the item set I
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Parameters for feasibility: maximum weight b of the knapsack and weights ai of each item i ∈ I

Parameters for cost function calculation: utilities ci , for each item i ∈ I

Ground set: item set I

Candidate object to be a feasible solution: any subset K of the item set I

Recognition algorithm checks if candidate object K is a subset of I and if
∑

i∈K
ai ≤ b.

Cost calculation algorithm computes the total utility f (K ) =
∑

i∈K
ci K of the selected objects.
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Parameters for feasibility: undirected graph G = (V ,U) with node set V representing the cities and
edge set U, number of cities to be visited |V |

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U
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Parameters for feasibility: undirected graph G = (V ,U) with node set V representing the cities and
edge set U, number of cities to be visited |V |

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U

Ground set: node set V

Candidate object to be a feasible solution: any circular permutation of all cities in the node set V
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Parameters for feasibility: undirected graph G = (V ,U) with node set V representing the cities and
edge set U, number of cities to be visited |V |

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U

Ground set: node set V

Candidate object to be a feasible solution: any circular permutation of all cities in the node set V

Recognition algorithm checks if there is an edge between each pair of consecutive cities.

Cost calculation algorithm computes the total length of the edges between each pair of consecutive
cities in the circular permutation.
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Parameters for feasibility: undirected graph G = (V ,U) with node set V representing the cities and
edge set U, number of cities to be visited |V |

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U

Ground set: node set V

Candidate object to be a feasible solution: any circular permutation of all cities in the node set V

Recognition algorithm checks if there is an edge between each pair of consecutive cities.

Cost calculation algorithm computes the total length of the edges between each pair of consecutive
cities in the circular permutation.

OR, ALTERNATIVELY:
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Parameters for feasibility: undirected graph G = (V ,U) with node set V representing the cities and
edge set U, number of cities to be visited |V |

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U

Ground set: node set V

Candidate object to be a feasible solution: any circular permutation of all cities in the node set V

Recognition algorithm checks if there is an edge between each pair of consecutive cities.

Cost calculation algorithm computes the total length of the edges between each pair of consecutive
cities in the circular permutation.

OR, ALTERNATIVELY:

Ground set: edge set U

Candidate object to be a feasible solution: any subset H of the edge set U
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Parameters for feasibility: undirected graph G = (V ,U) with node set V representing the cities and
edge set U, number of cities to be visited |V |

Parameters for cost function calculation: edge lengths dij , for every edge (i , j) ∈ U

Ground set: node set V

Candidate object to be a feasible solution: any circular permutation of all cities in the node set V

Recognition algorithm checks if there is an edge between each pair of consecutive cities.

Cost calculation algorithm computes the total length of the edges between each pair of consecutive
cities in the circular permutation.

OR, ALTERNATIVELY:

Ground set: edge set U

Candidate object to be a feasible solution: any subset H of the edge set U

Recognition algorithm checks if edges in the candidate subset H define a Hamiltonian cycle of G
visiting every node in V exactly once.

Cost calculation algorithm computes the sum of the lengths of the edges in the Hamiltonian cycle H.
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A combinatorial optimization problem can be alternatively stated as:

Optimization problem

Given representations for the parameter sets PF and Pf for algorithms AF and Af , respectively, find an
optimal feasible solution.
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A combinatorial optimization problem can be alternatively stated as:

Optimization problem

Given representations for the parameter sets PF and Pf for algorithms AF and Af , respectively, find an
optimal feasible solution.

If instead of finding an optimal solution itself, we are only interested in finding its value, then we have a
more relaxed evaluation form of the problem:

Evaluation problem

Given representations for the parameter sets PF and Pf for algorithms AF and Af , respectively, find the
cost of an optimal feasible solution.
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A combinatorial optimization problem can be alternatively stated as:

Optimization problem

Given representations for the parameter sets PF and Pf for algorithms AF and Af , respectively, find an
optimal feasible solution.

If instead of finding an optimal solution itself, we are only interested in finding its value, then we have a
more relaxed evaluation form of the problem:

Evaluation problem

Given representations for the parameter sets PF and Pf for algorithms AF and Af , respectively, find the
cost of an optimal feasible solution.

If the value of any solution can be efficiently computed, the evaluation version cannot be harder than the
optimization version: once the optimization version has been solved and its optimal solution is known, its
value can be easily computed by the cost calculation algorithm Af .
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A third problem version is particularly important in the context of complexity theory.

The decision version of a minimization problem is simply a question requiring a “yes” or “no” answer:

Decision problem

Given representations for parameter sets PF and Pf for algorithms AF and Af , respectively, and an
integer number B that represents a bound, is there a feasible solution S ∈ F such that f (S) ≤ B?
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A third problem version is particularly important in the context of complexity theory.

The decision version of a minimization problem is simply a question requiring a “yes” or “no” answer:

Decision problem

Given representations for parameter sets PF and Pf for algorithms AF and Af , respectively, and an
integer number B that represents a bound, is there a feasible solution S ∈ F such that f (S) ≤ B?

The decision version of a maximization problem asks for the existence of a feasible solution with cost
greater than or equal to B.

The decision version of a combinatorial optimization problem cannot be harder than its evaluation
version: once the optimal value has been obtained as the solution of the evaluation version, we can just
compare it with the value of B to give a “yes” or “no” answer to the decision version.
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A third problem version is particularly important in the context of complexity theory.

The decision version of a minimization problem is simply a question requiring a “yes” or “no” answer:

Decision problem

Given representations for parameter sets PF and Pf for algorithms AF and Af , respectively, and an
integer number B that represents a bound, is there a feasible solution S ∈ F such that f (S) ≤ B?

The decision version of a maximization problem asks for the existence of a feasible solution with cost
greater than or equal to B.

The decision version of a combinatorial optimization problem cannot be harder than its evaluation
version: once the optimal value has been obtained as the solution of the evaluation version, we can just
compare it with the value of B to give a “yes” or “no” answer to the decision version.

We have therefore established a problem hierarchy:

The decision version is not harder than the evaluation version.

The evaluation version is not harder than the optimization version.
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begin TSPOPT(n, d);
1 LB ← 0;
2 UB ← n ·maxi,j∈V :i 6=j{dij};
3 BIG ← UB + 1;
4 while UB 6= LB do

5 if TSPDEC(n, d , ⌊(LB + UB)/2⌋) = “yes”
then UB ← ⌊(LB + UB)/2⌋;

6 else LB ← ⌊(LB + UB)/2⌋;
7 end-if;
8 end-while;
9 OPT ← UB;
. . .

Algorithm TSPOPT(n, d) for the optimization version of
the traveling salesman problem.
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begin TSPOPT(n, d);
1 LB ← 0;
2 UB ← n ·maxi,j∈V :i 6=j{dij};
3 BIG ← UB + 1;
4 while UB 6= LB do

5 if TSPDEC(n, d , ⌊(LB + UB)/2⌋) = “yes”
then UB ← ⌊(LB + UB)/2⌋;

6 else LB ← ⌊(LB + UB)/2⌋;
7 end-if;
8 end-while;
9 OPT ← UB;
. . .

Algorithm TSPOPT(n, d) for the optimization version of
the traveling salesman problem.

Algorithm is based on the repeated execution of
algorithm TSPDEC(n, d ,B) for the decision
version.

First part: solve the evaluation version by
computing the cost OPT of the optimal solution.

O(logUB) iterations.
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9 OPT ← UB;
10 for j = 1, . . . , n do

11 for i = 1, . . . , n with i 6= j do

12 TMP ← dij ;
13 dij ← BIG ;
14 if TSPDEC(n, d ,OPT ) = “no”

then dij ← TMP;
15 end-for;
16 end-for;
17 S∗ ← ∅;
18 for j = 1, . . . , n do

19 for i = 1, . . . , n with i 6= j do

20 if dij 6= BIG then S∗ ← S∗ ∪ {(i , j)};
21 end-for;
22 end-for;
23 return S∗,OPT ;
end TSPOPT.

Algorithm TSPOPT(n, d) for the optimization version of
the traveling salesman problem.
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9 OPT ← UB;
10 for j = 1, . . . , n do

11 for i = 1, . . . , n with i 6= j do

12 TMP ← dij ;
13 dij ← BIG ;
14 if TSPDEC(n, d ,OPT ) = “no”

then dij ← TMP;
15 end-for;
16 end-for;
17 S∗ ← ∅;
18 for j = 1, . . . , n do

19 for i = 1, . . . , n with i 6= j do

20 if dij 6= BIG then S∗ ← S∗ ∪ {(i , j)};
21 end-for;
22 end-for;
23 return S∗,OPT ;
end TSPOPT.

Algorithm TSPOPT(n, d) for the optimization version of
the traveling salesman problem.

Algorithm is based on the repeated execution of
algorithm TSPDEC(n, d ,B) for the decision
version.

Second part: solve the optization version from the
ptrviously computed cost OPT of the optimal
solution.

O(n2) iterations.
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9 OPT ← UB;
10 for j = 1, . . . , n do

11 for i = 1, . . . , n with i 6= j do

12 TMP ← dij ;
13 dij ← BIG ;
14 if TSPDEC(n, d ,OPT ) = “no”

then dij ← TMP;
15 end-for;
16 end-for;
17 S∗ ← ∅;
18 for j = 1, . . . , n do

19 for i = 1, . . . , n with i 6= j do

20 if dij 6= BIG then S∗ ← S∗ ∪ {(i , j)};
21 end-for;
22 end-for;
23 return S∗,OPT ;
end TSPOPT.

Algorithm TSPOPT(n, d) for the optimization version of
the traveling salesman problem.

Algorithm is based on the repeated execution of
algorithm TSPDEC(n, d ,B) for the decision
version.

Second part: solve the optization version from the
ptrviously computed cost OPT of the optimal
solution.

O(n2) iterations.

Overall complexity: O((logUB + n2) · T (n)),
where T (n) is the complexity of solving
TSPDEC(n, d ,B).

Similar constructions available to most problems.
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Optimization version

Given a graph G = (V ,U), find a maximum cardinality clique of G .
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Optimization version

Given a graph G = (V ,U), find a maximum cardinality clique of G .

Evaluation version
Given a graph G = (V ,U), find the number of nodes in a maximum cardinality clique of G .
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Optimization version

Given a graph G = (V ,U), find a maximum cardinality clique of G .

Evaluation version
Given a graph G = (V ,U), find the number of nodes in a maximum cardinality clique of G .

Decision version
Given a graph G = (V ,U) and an integer number B, is there a clique in G with at least B nodes?



Knapsack problem – Problem versions
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Optimization version

Given a set I = {1, . . . , n} of items, integer weights ai and utilities ci associated with each item i ∈ I , and
a maximum weight capacity b, find a subset K∗ ⊆ I of items such that∑

i∈K∗ ci = maxK⊆I{
∑

i∈K
ci :

∑
i∈K

ai ≤ b}.
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Optimization version

Given a set I = {1, . . . , n} of items, integer weights ai and utilities ci associated with each item i ∈ I , and
a maximum weight capacity b, find a subset K∗ ⊆ I of items such that∑

i∈K∗ ci = maxK⊆I{
∑

i∈K
ci :

∑
i∈K

ai ≤ b}.

Evaluation version
Given a set I = {1, . . . , n} of items, integer weights ai and utilities ci associated with each item i ∈ I , and
a maximum weight capacity b, find c∗ = maxK⊆I{

∑
i∈K

ci :
∑

i∈K
ai ≤ b}.
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Optimization version

Given a set I = {1, . . . , n} of items, integer weights ai and utilities ci associated with each item i ∈ I , and
a maximum weight capacity b, find a subset K∗ ⊆ I of items such that∑

i∈K∗ ci = maxK⊆I{
∑

i∈K
ci :

∑
i∈K

ai ≤ b}.

Evaluation version
Given a set I = {1, . . . , n} of items, integer weights ai and utilities ci associated with each item i ∈ I , and
a maximum weight capacity b, find c∗ = maxK⊆I{

∑
i∈K

ci :
∑

i∈K
ai ≤ b}.

Decision version
Given a set I = {1, . . . , n} of items, integer weights ai and utilities ci associated with each item i ∈ I , a
maximum weight capacity b, and an integer B, is there K ⊆ I such that

∑
i∈K

ai ≤ b and
∑

i∈K
ci ≥ B?
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Optimization version

Given a complete graph G = (V ,U) with non-negative distances dij between every pair of nodes i , j ∈ V ,
find a shortest Hamiltonian cycle in G .
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Optimization version

Given a complete graph G = (V ,U) with non-negative distances dij between every pair of nodes i , j ∈ V ,
find a shortest Hamiltonian cycle in G .

Evaluation version
Given a complete graph G = (V ,U) with non-negative distances dij between every pair of nodes i , j ∈ V ,
compute the length of a shortest Hamiltonian cycle in G .
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Optimization version

Given a complete graph G = (V ,U) with non-negative distances dij between every pair of nodes i , j ∈ V ,
find a shortest Hamiltonian cycle in G .

Evaluation version
Given a complete graph G = (V ,U) with non-negative distances dij between every pair of nodes i , j ∈ V ,
compute the length of a shortest Hamiltonian cycle in G .

Decision version
Given a complete graph G = (V ,U) with non-negative distances dij between every pair of nodes i , j ∈ V

and an integer B, is there a Hamiltonian cycle in G of length less than or equal to B?



One problem has three versions
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There is a problem hierarchy:

The decision version is not harder than the evaluation version.

The evaluation version is not harder than the optimization version.
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There is a problem hierarchy:

The decision version is not harder than the evaluation version.

The evaluation version is not harder than the optimization version.

Under very reasonable assumptions, the three versions of any combinatorial problem have roughly the
same computational complexity:

If we have a polynomial-time algorithm to solve the decision version of a combinatorial problem,
then in general we can also construct polynomial-time algorithms for solving the evaluation and the
optimization versions.

Decision problems offer a simpler and more structured framework for the study of complexity theory.

If a decision problem cannot be solved in polynomial time, then its corresponding optimization version
cannot be solved in polynomial time as well.
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The decision version of a combinatorial optimization problem amounts to a question that can be answered
by either “yes” or “no”. Some examples:
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The decision version of a combinatorial optimization problem amounts to a question that can be answered
by either “yes” or “no”. Some examples:

SHORTEST PATH
Given a directed graph G = (V ,A), an origin node s ∈ V , a destination node t ∈ V , lengths dij
associated with every arc (i , j) ∈ A, and an integer B, is there a path from s to t in G whose length is
less than or equal to B?
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The decision version of a combinatorial optimization problem amounts to a question that can be answered
by either “yes” or “no”. Some examples:

SHORTEST PATH
Given a directed graph G = (V ,A), an origin node s ∈ V , a destination node t ∈ V , lengths dij
associated with every arc (i , j) ∈ A, and an integer B, is there a path from s to t in G whose length is
less than or equal to B?

MINIMUM SPANNING TREE
Given a graph G = (V ,U), a weight dij associated with each edge (i , j) ∈ U, and an integer B, is there a
spanning tree of G such that the sum of the weights of its edges is less than or equal to B?
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STEINER TREE IN GRAPHS
Given a graph G = (V ,U), lengths dij associated with each edge (i , j) ∈ U, a subset T ⊆ V , and an
integer B, is there a subtree of G that connects all nodes in T and such that the sum of its edge lengths
is less than or equal to B?
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STEINER TREE IN GRAPHS
Given a graph G = (V ,U), lengths dij associated with each edge (i , j) ∈ U, a subset T ⊆ V , and an
integer B, is there a subtree of G that connects all nodes in T and such that the sum of its edge lengths
is less than or equal to B?

CLIQUE
Given a graph G = (V ,U) and an integer B, is there a clique in G with at least B nodes?
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STEINER TREE IN GRAPHS
Given a graph G = (V ,U), lengths dij associated with each edge (i , j) ∈ U, a subset T ⊆ V , and an
integer B, is there a subtree of G that connects all nodes in T and such that the sum of its edge lengths
is less than or equal to B?

CLIQUE
Given a graph G = (V ,U) and an integer B, is there a clique in G with at least B nodes?

KNAPSACK
Given a set I = {1, . . . , n} of items, integer weights ai and utilities ci associated with each item i ∈ I , a
maximum weight capacity b, and an integer B, is there a subset of items K ⊆ I such that

∑
i∈K

ai ≤ b

and
∑

i∈K
ci ≥ B?
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TRAVELING SALESMAN PROBLEM (TSP)

Given a set V = {1, . . . , n} of cities and non-negative distances dij between every pair of cities i , j ∈ V ,
with i 6= j , and an integer B, is there a tour visiting every city of V exactly once with length less than or
equal to B?
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TRAVELING SALESMAN PROBLEM (TSP)

Given a set V = {1, . . . , n} of cities and non-negative distances dij between every pair of cities i , j ∈ V ,
with i 6= j , and an integer B, is there a tour visiting every city of V exactly once with length less than or
equal to B?

INDEPENDENT SET
Given a graph G = (V ,U) and an integer B, is there an independent set of nodes in G (i.e., a subset of
mutually nonadjacent nodes) with at least B nodes?
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TRAVELING SALESMAN PROBLEM (TSP)

Given a set V = {1, . . . , n} of cities and non-negative distances dij between every pair of cities i , j ∈ V ,
with i 6= j , and an integer B, is there a tour visiting every city of V exactly once with length less than or
equal to B?

INDEPENDENT SET
Given a graph G = (V ,U) and an integer B, is there an independent set of nodes in G (i.e., a subset of
mutually nonadjacent nodes) with at least B nodes?

GRAPH COLORING
Given a graph G = (V ,U) and an integer B, is it possible to color the nodes of G with at most B colors,
such that adjacent nodes receive different colors?
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LINEAR PROGRAMMING
Given an m× n matrix A of integer numbers, an integer m-vector b, an integer n-vector c, and an integer
B, is there an n-vector x ≥ 0 of rational numbers such that A · x = b and c · x ≤ B?
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LINEAR PROGRAMMING
Given an m× n matrix A of integer numbers, an integer m-vector b, an integer n-vector c, and an integer
B, is there an n-vector x ≥ 0 of rational numbers such that A · x = b and c · x ≤ B?

INTEGER PROGRAMMING
Given an m× n matrix A of integer numbers, an integer m-vector b, an integer n-vector c, and an integer
B, is there an n-vector x ≥ 0 of integer numbers such that A · x = b and c · x ≤ B?
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There are other decision problems that have not been originally cast as optimization problems. Some
examples:
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There are other decision problems that have not been originally cast as optimization problems. Some
examples:

HAMILTONIAN CYCLE
Given a graph G = (V ,U), is there a Hamiltonian cycle in G visiting all its nodes exactly once?
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There are other decision problems that have not been originally cast as optimization problems. Some
examples:

HAMILTONIAN CYCLE
Given a graph G = (V ,U), is there a Hamiltonian cycle in G visiting all its nodes exactly once?

GRAPH PLANARITY
Given a graph G = (V ,U), is it planar?
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There are other decision problems that have not been originally cast as optimization problems. Some
examples:

HAMILTONIAN CYCLE
Given a graph G = (V ,U), is there a Hamiltonian cycle in G visiting all its nodes exactly once?

GRAPH PLANARITY
Given a graph G = (V ,U), is it planar?

GRAPH CONNECTEDNESS
Given a graph G = (V ,U), is it connected?
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SATISFIABILITY (SAT)

Given m disjunctive clauses C1, . . . ,Cm involving the Boolean variables x1, . . . , xn and their complements,
is there a truth assignment of 0 (false) and 1 (true) values to these variables such that the formula
C1 ∧ C2 ∧ · · · ∧ Cm is satisfiable?
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SATISFIABILITY (SAT)

Given m disjunctive clauses C1, . . . ,Cm involving the Boolean variables x1, . . . , xn and their complements,
is there a truth assignment of 0 (false) and 1 (true) values to these variables such that the formula
C1 ∧ C2 ∧ · · · ∧ Cm is satisfiable?

(x1 ∨ x2 ∨ x5) ∧ (x̄2 ∨ x̄5) ∧ (x̄1 ∨ x3 ∨ x4 ∨ x5)

x1 = x3 = x4 = 1, x2 = x5 = 0 −→ TRUE
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SATISFIABILITY (SAT)

Given m disjunctive clauses C1, . . . ,Cm involving the Boolean variables x1, . . . , xn and their complements,
is there a truth assignment of 0 (false) and 1 (true) values to these variables such that the formula
C1 ∧ C2 ∧ · · · ∧ Cm is satisfiable?

(x1 ∨ x2 ∨ x5) ∧ (x̄2 ∨ x̄5) ∧ (x̄1 ∨ x3 ∨ x4 ∨ x5)

x1 = x3 = x4 = 1, x2 = x5 = 0 −→ TRUE

(x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄2)

always FALSE
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Class P
A decision problem P belongs to the class P if there exists an algorithm A that solves any of its instances
in polynomial time.

Class P is formed by “easy” decision problems that can be efficiently solved by polynomial-time
algorithms.
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Class P
A decision problem P belongs to the class P if there exists an algorithm A that solves any of its instances
in polynomial time.

Class P is formed by “easy” decision problems that can be efficiently solved by polynomial-time
algorithms.

Examples of problems in this class:

SHORTEST PATH

MINIMUM SPANNING TREE

GRAPH CONNECTEDNESS

LINEAR PROGRAMMING

2-SAT (special case of SATISFIABILITY, in which every clause has exactly two variables or their
complements),
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Certificate
Given a decision problem P and a “yes” instance J , a certificate c(J ) is a string that encodes a solution
and makes it possible to reach the “yes” answer for instance J .
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Certificate
Given a decision problem P and a “yes” instance J , a certificate c(J ) is a string that encodes a solution
and makes it possible to reach the “yes” answer for instance J .

Concise certificate
A certificate is said to be concise if the length of its encoding is polynomial in the amount of memory that
is used to encode instance J .
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Certificate
Given a decision problem P and a “yes” instance J , a certificate c(J ) is a string that encodes a solution
and makes it possible to reach the “yes” answer for instance J .

Concise certificate
A certificate is said to be concise if the length of its encoding is polynomial in the amount of memory that
is used to encode instance J .

Class NP

A decision problem P belongs to the class NP if there exists a certificate-checking algorithm A′ such
that, for any “yes” instance of P, there is a concise certificate c(J ) with the property that algorithm A′

applied to instance J and certificate c(J ) reaches the answer “yes” in polynomial time.
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For a problem to be in NP, it is not required that there exists an algorithm that computes an answer in
polynomial time for every instance of this problem.

All that is required for a problem to be in NP is that there exists a concise certificate for any “yes”
instance that can be checked for validity in polynomial time.
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For a problem to be in NP, it is not required that there exists an algorithm that computes an answer in
polynomial time for every instance of this problem.

All that is required for a problem to be in NP is that there exists a concise certificate for any “yes”
instance that can be checked for validity in polynomial time.

Maximum clique problem – Concise certificate and membership in NP

• A certificate for the maximum clique problem is an encoding of a list of nodes.
• This certificate is concise, because it cannot have more than |V | nodes.
• The certificate-checking algorithm is polynomial. It starts by checking whether the certificate
corresponds to a subset of the nodes of the graph G = (V ,U), then verifying if there is an edge in G for
every pair of nodes in the certificate. Next, it counts the number of nodes in the certificate, which is
compared with the parameter B.
• Therefore, the decision problem CLIQUE belongs to NP.
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Knapsack problem – Concise certificate and membership in NP

• A certificate for the knapsack problem is an encoding of a subset of the n available items.
• This certificate is concise, because it cannot have more than n items.
• The certificate-checking algorithm is polynomial. It starts by adding up the weights of the items in the
certificate and comparing the total weight with the maximum weight capacity b. Next, it adds up the
utilities of the items in the certificate and their total utility is compared with the parameter B.
• Consequently, the decision problem KNAPSACK belongs to NP.
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Knapsack problem – Concise certificate and membership in NP

• A certificate for the knapsack problem is an encoding of a subset of the n available items.
• This certificate is concise, because it cannot have more than n items.
• The certificate-checking algorithm is polynomial. It starts by adding up the weights of the items in the
certificate and comparing the total weight with the maximum weight capacity b. Next, it adds up the
utilities of the items in the certificate and their total utility is compared with the parameter B.
• Consequently, the decision problem KNAPSACK belongs to NP.

Traveling salesman problem – Concise certificate and membership in NP

• A certificate for the traveling salesman problem is an encoding of a permutation of the n cities or nodes
in the graph G = (V ,U).
• This certificate is concise, because it must have exactly |V | nodes.
• The certificate-checking algorithm is polynomial. It starts by checking if every city appears exactly once.
Next, it adds up the lengths of the edges defined by the certificate and the total length is compared with
the parameter B.
• Therefore, the decision problem TSP also belongs to NP.
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Examples of other problems in this class:

STEINER TREE IN GRAPHS

GRAPH PLANARITY

GRAPH COLORING

INTEGER PROGRAMMING

HAMILTONIAN CYCLE

SATISFIABILITY
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Examples of other problems in this class:

STEINER TREE IN GRAPHS

GRAPH PLANARITY

GRAPH COLORING

INTEGER PROGRAMMING

HAMILTONIAN CYCLE

SATISFIABILITY

To prove that a problem is in NP, one is not required to provide an efficient algorithm to compute the
certificate:

One has only to prove the existence of at least one concise certificate for each “yes” instance.

Nothing is required for the “no” instances: concise certificates should exist only for “yes” instances.

It works as if an external oracle was able to provide the certificate.

The acronym NP stands for nondeterministic polynomial, and not for nonpolynomial.



The classes P and NP

University of Vienna Complexity Theory Metaheuristics – 2017-10-11 40 / 52

Suppose there exists a polynomial-time algorithm A for solving some decision problem P in P.

In other words, algorithm A is able to provide the appropriate “yes” or “no” answer for every
instance of P.

The steps of algorithm A applied to any “yes” instance provide a concise certificate for this instance.

The existence of a concise certificate that can be checked in polynomial time for any “yes” instance
shows that P is also in NP.

Therefore, whenever a decision problem P ∈ P, it also holds that P ∈ NP.
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Suppose there exists a polynomial-time algorithm A for solving some decision problem P in P.

In other words, algorithm A is able to provide the appropriate “yes” or “no” answer for every
instance of P.

The steps of algorithm A applied to any “yes” instance provide a concise certificate for this instance.

The existence of a concise certificate that can be checked in polynomial time for any “yes” instance
shows that P is also in NP.

Therefore, whenever a decision problem P ∈ P, it also holds that P ∈ NP.

Consequently, P ⊆ NP.
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Polynomial-time transformation

Let P1 and P2 be two decision problems. We say that there is a polynomial-time transformation from
problem P1 to problem P2 if an instance J2 of P2 can be constructed in polynomial time from any
instance J1 of P1, such that J1 is a “yes” instance of P1 if and only if J2 is a “yes” instance of P2.
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CLIQUE
Given a graph G = (V ,U) and an integer B, is there a clique in G with at least B nodes?

INDEPENDENT SET
Given a graph G = (V ,U) and an integer B, is there an independent set of nodes in G (i.e., a subset of
mutually nonadjacent nodes) with at least B nodes?
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CLIQUE
Given a graph G = (V ,U) and an integer B, is there a clique in G with at least B nodes?

INDEPENDENT SET
Given a graph G = (V ,U) and an integer B, is there an independent set of nodes in G (i.e., a subset of
mutually nonadjacent nodes) with at least B nodes?

• Let an instance J1 of CLIQUE be defined by a graph G = (V ,U) and an integer B.
• Let Ḡ = (V , Ū) be the complement of G : for every pair of nodes i , j ∈ V , there is an edge (i , j) ∈ Ū if
and only if the pair i , j does not constitute an edge in U.
• An instance J2 of INDEPENDENT SET defined by the complement of G and the same integer B can
be constructed in time O(|V |2) such that J1 is a “yes” instance of CLIQUE if and only if J2 is a “yes”
instance of INDEPENDENT SET.
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(a) Maximum clique in the original graph G (b) Maximum independent set in Ḡ

Figure: Polynomial transformation from CLIQUE to INDEPENDENT SET: Nodes 1, 4, and 5 form a maximum
clique of the original graph G in (a), while the same nodes correspond to a maximum independent set of the
complement Ḡ of G in (b). The instances defined by G and Ḡ are “yes” instances for any B ≤ 3 and “no”
instances for any B > 3.
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NP-complete problems

A decision problem P ∈ NP is said to be NP-complete if every other problem in NP can be transformed
to it in polynomial time.

If there is a polynomial-time algorithm for any NP-complete problem, then there are also polynomial-time
algorithms for all other problems in NP.
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NP-complete problems

A decision problem P ∈ NP is said to be NP-complete if every other problem in NP can be transformed
to it in polynomial time.

If there is a polynomial-time algorithm for any NP-complete problem, then there are also polynomial-time
algorithms for all other problems in NP.

The proof that a problem is NP-complete involves two main steps:

1 Proving that it is in NP.

2 Showing that all other problems in NP can be transformed to it in polynomial time.

The second part is often the hardest and is usually proved by showing that another problem already
proved to be NP-complete is polynomially transformable to the problem on hand.
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SATISFIABILITY was the first problem to be explicitly proved to be NP-complete (Cook, 1971).
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SATISFIABILITY was the first problem to be explicitly proved to be NP-complete (Cook, 1971).

Other NP-completeness results followed by polynomial transformations originating with SAT:

3-SAT (special case of SATISFIABILITY, in which every clause has exactly three variables or their
complements)

KNAPSACK

CLIQUE

INDEPENDENT SET

TSP

STEINER TREE IN GRAPHS

INTEGER PROGRAMMING

HAMILTONIAN CYCLE

GRAPH COLORING

GRAPH PLANARITY

and many others.
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NP-hard problems

A problem P is NP-hard if all problems in NP are polynomially transformable to P, but its membership
to NP cannot be established.

This definition includes not only decision problems that are not proved to be in NP, but also refers to the
optimization problems whose decision versions are NP-complete.

The maximum clique problem, the knapsack problem, and the traveling salesman problem introduced as
combinatorial optimization problems are all NP-hard, since the decision problems CLIQUE, KNAPSACK,
and TSP are NP-complete, respectively.
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Consider the requirements of space or memory that are needed for solving a decision problem:

Class PSPACE
A decision problem P belongs to the class PSPACE if there exists an algorithm A that solves any of its
instances using a polynomial amount of space (or memory).
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Consider the requirements of space or memory that are needed for solving a decision problem:

Class PSPACE
A decision problem P belongs to the class PSPACE if there exists an algorithm A that solves any of its
instances using a polynomial amount of space (or memory).

Any polynomial-time algorithm cannot consume more than a polynomial amount of space: P ⊆ PSPACE

Since the certificate-checking for problems in NP is polynomial: NP ⊆ PSPACE

Even problems that take an exponential amount of time to be solved by repeated enumeration make use
of polynomial space.
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Consider the requirements of space or memory that are needed for solving a decision problem:

Class PSPACE
A decision problem P belongs to the class PSPACE if there exists an algorithm A that solves any of its
instances using a polynomial amount of space (or memory).

Any polynomial-time algorithm cannot consume more than a polynomial amount of space: P ⊆ PSPACE

Since the certificate-checking for problems in NP is polynomial: NP ⊆ PSPACE

Even problems that take an exponential amount of time to be solved by repeated enumeration make use
of polynomial space.

Since polynomiality is considered as a limitation for any scarce resource such as time or space, we can say
that time requirements become critical (i.e., superpolynomial) before space does.

Time is the main and critical scarce resource considered in the analysis and design of computer
algorithms, which in practice very rarely involve space considerations.
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Open question – P vs. NP:

P ⊂ NP?

P = NP?
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Most optimization problems of practical relevance are NP-hard.

Being considered as computationally intractable does not preclude the need for their solution.
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Most optimization problems of practical relevance are NP-hard.

Being considered as computationally intractable does not preclude the need for their solution.

Solution approaches to exactly solve or to efficiently find high-quality solutions:

Super-polynomial exact algorithms: Theoretical developments in polyhedral theory, combined with
efficient algorithm design and data structures and advances in computer hardware, have made it
possible to solve very large instances of some NP-hard problems.

Parallel processing: Parallel/distributed algorithms and new architectures (clusters, grids, clouds)
with a limited number of processors are able to speedup sequential algorithms, but do not change
problem complexity.

Approximation algorithms: Algorithms that build feasible solutions that are not necessarily optimal,
but whose objective function value can be shown to be within a guaranteed difference from the exact
optimal value (not very useful results in practice).

Heuristics: A heuristic (or approximate algorithm) is essentially any algorithm that provides a
feasible solution for a given problem, without necessarily providing a guarantee of performance in
terms of solution quality or computation time.
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Heuristic methods can be classified into three main groups:
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Heuristic methods can be classified into three main groups:

Constructive heuristics are those that build a feasible solution from scratch. Greedy and semi-greedy
algorithms are examples of constructive heuristics.

Local search or improvement procedures start from a feasible solution and improve it by successive
small modifications until a locally optimal solution is found. They can become prematurely stuck in
low-quality locally optimal solutions.

Metaheuristics are general high-level procedures that coordinate simple heuristics and rules to find
good-quality solutions to computationally difficult optimization problems: simulated annealing, tabu
search, greedy randomized adaptive search procedures (GRASP), genetic algorithms, scatter search,
variable neighborhood search (VNS), ant colonies, and others.
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Metaheuristics are based on distinct paradigms and offer different mechanisms to escape from locally
optimal solutions.

Trajectory-based: one single solution is progressively improved.

Population-based: a family of solutions is improved as a whole.
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Metaheuristics are based on distinct paradigms and offer different mechanisms to escape from locally
optimal solutions.

Trajectory-based: one single solution is progressively improved.

Population-based: a family of solutions is improved as a whole.

They are among the most effective solution strategies for solving combinatorial optimization problems in
practice and very often produce much better solutions than those obtained by the simple heuristics and
rules they coordinate.

Metaheuristics have been applied to a wide array of academic and real-world problems.
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Metaheuristics are based on distinct paradigms and offer different mechanisms to escape from locally
optimal solutions.

Trajectory-based: one single solution is progressively improved.

Population-based: a family of solutions is improved as a whole.

They are among the most effective solution strategies for solving combinatorial optimization problems in
practice and very often produce much better solutions than those obtained by the simple heuristics and
rules they coordinate.

Metaheuristics have been applied to a wide array of academic and real-world problems.

Algorithmic research in metaheuristics:

Solve larger problems

Solve problems in smaller computation times

Find better solutions
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The material in this talk is taken from

Chapter 2 – A short tour of combinatorial
optimization and computational complexity

of our book, Optimization by GRASP: Greedy Ran-

domized Adaptive Search Procedures (Resende &
Ribeiro, 2016).

and from the book

C.H. Papadimitriou and K. Steiglitz,
Combinatorial Optimization, 1982.

Short video presentation of the P vs. NP question.


